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On the basis of previously obtained solutions for equations of two-phase filtration with phase transitions, we 
suggest and analyze methods for determining a number of hydromechanical quantities from experimental 
"depression-output' curves for operating wells of gas-condensate fields. 

In [1-3 ], a method was described for solving a one-dimensional stationary problem of filtration with phase 
transitions for a two-phase gas-condensate mixture. The solutions obtained make it possible in principle to predict 

the dependences of output on depression for operating wells. Such dependences are called indicator curves. In 

practice they are obtained in stationary investigations of wells and are usually used for estimating the permeability 

of the well-bottom zones. However, it turns out that the functional form of the dependence of solutions for a 

filtration problem on free parameters allows one to extract a great amount of useful information from experimental 

indicator curves. In the present work we describe methods for calculating different hydromechanical quantities from 

the results of stationary investigations of wells. 
Below, we will reproduce briefly the necessary information from [1-3 ]. 

Suppose there is a stationary cylindrically symmetric filtration flow of a two-phase gas-condensate type 

system in a uniform isotropic porous medium. A hydrocarbon liquid, i.e., a condensate, is formed on a decrease in 

pressure in the native gas as a result of the so-called phenomenon of retrograde condensation [4, 5 ]. We will assume 
the process to be isothermal, and, therefore, will everywhere omit its temperature dependence. 

We will use the notation: r for the distance to the well axis; k for the permeability; fg, pg, pg, ng for the 

relative phase permeability, pressure, shear viscosity, and for the mole gas density, respectively; fliq, Pliq,/~liq, and 

nliq for the similar quantities for the condensate. Moreover, assume that cig and cai q are the mole concentrations 

of the components in the gas and condensate, with the subscript i running from 1 to N, where N is the total number 

of components. The filtration region is determined by the inequalities 

r w _< r _< r 0 , (1) 

where r w is the borehole radius along the drill bit; r 0 is the radius of the supply contour. The following boundary 
conditions hold: 

Pglr=r w = Pw, Pglr=r 0 = Po' (2) 

where Pw is the pressure at the bottom of the well; P0 is the pressure in the bed, Pw < Po. For gas-condensate fields 
in a bed (i.e., far from the borehole) the fluid is either in the gas phase or in a two-phase state in which the liquid 

phase (condensate) occupies an insignificant pore volume and can be considered motionless. Let Cio be the 

composition of the movable (gas) phase of the native fluid, and Pd be the pressure of the onset of condensation 
corresponding to this composition. By virtue of the assumptions made, the following inequality holds 

Pd < Po- (3) 
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Within the region of filtration (1) the compositions of the gas and condensate are interrelated as 

Wc,liq + (1 - w)  cig = Cio. (4) 

Here W is a nonnegative function of pressures pg and Pliq in the phases. If we interpret the quantity W as the mole 

fraction of the liquid phase in contact condensation of a mixture with composition c/o, then the dependence W -  

W(p[, Pliq) can be found from laboratory experiments or from calculations from semiempirical equations of state 

[5, 61. 
In the problem considered the filtration relationships lead to a set of equations: 

tin_ dPliq l 1 
fg ~-~ = (1 -- W) flgn; fliq ' d~ = W/'tliqnliq ' Pg - Pliq = Pc" (5) 

Here we use the parameter ~ - Q ( 2 g k h ) - l l n ( r / a ) ,  where Q is the output of the well in moles per time; h is the 

thickness of the permeable layer; a is the arbitrary positive quantity with the dimension of length. We consider the 

phase permeabilities and capillary pressure jump Pc as functions of the saturation s of the pore space by the liquid 

phase. Let, in addition, the following functional dependences be known: 

pg ----" p (rig, c/g),  Pliq ---- P (nliq, ctliq) , ~g ----" ~ (ng, c/g),  ~liq ---- ~ (nllq, C/liq) �9 (6) 

Then the system of equations (5) can be considered a closed problem for determining the functions pg = 

Pg(~), Pliq = Pliq(~), and s - s(~). Really, the values of W, cig, and clliq are defined as functions of pg and Pliq 

from relations (4). The subsequent substitution into Eq. (6) also makes it possible to express ng, nil q, /~g, and 

/gliq as functions of pg and Pnq- Let s. be the mobility threshold for the liquid phase. If s. = 0, then a solution of 
system (5) is unique with accuracy to the shift in the parameter ~ [3 ]. If s. > 0, we specify the solution by the 

additional condition s = 0, when W = 0. 

Suppose there is a certain solution for system (5): 

Pg0 (~), Ptiq0 (~), SO (~)" (7) 

It is easy to construct a solution of the filtration problem that would satisfy boundary conditions (2). In 

fact, since Pgo(~) is a monotonically increasing function (see the first equation in system (5)), there are single 

values of ~w, ~o (~w < ~o) for which 

pgo (~w) = p w ,  p~o (~o) = p o .  

The output is calculated by the formula 

(2 = 2~kh (~0 - ~w)/In (ro /rw)  " (8) 

After this, it is easy to find the spatial distribution of pressures and saturation: 

Pg = Pg0 (~0 + A~) ,  Pliq --- Pliq0(~0 + A~) ,  s = s 0(~0 + A~) ,  

A~ = Q (2nkh)  In ( r / ro)  . 
(9) 

Taking as a basis the presented properties of the exact solutions for the filtration problem, we will consider 

the possible approaches to the interpretation of the experimental depression-output indicator curve: 

Q =  F(Ap) ,  A p = p 0 - P w .  (10) 

In subsequent Sections 1-4 we assume that relation (10) is known for a certain operating well. 

365 



500  

450 

400 

350 

$00 
0 100 200 300 400 D 

Fig. 1. Dependence of well-bottom pressure on output (curve, theory; points, 
experiment). Pw, atm; D, m3]day. 

1. Determination of the Mean Permeability. In practice, inflow to a well arrives not from one layer, but 
from a system of layers with thicknesses hm and permeabilities km (m = 1, ..., M3, where the values of hm can be 
considered known. Moreover, suppose we know a certain solution of Eq. (7) either in analytical form [ 1, 3 ] or as 
a result of numerical calculation. We assume that except for the thickness and permability, all the remaining 
characteristics of the layers coincide. For the prescribed value of Pw, we find the inflow from each layer from formula 
(8). Summing up and substituting relation (I0), we obtain 

e (At,) = ( a p ) ,  (11) 

M 

F,  (Ap) = 2~h (t0 - ~w)/In (ro/rw), "h = ~, hm, 
m = l  

M 

-~ = -~--1 E hmkra" 
m = l  

Relation (I 1) represents  a redefined system of equations for finding the mean permeabil i ty ~ over the well 

section. For actual situations an exact proportionality between the experimental  curve F(Ap) and  theoretical  curve 

F.(Ap) is of low probability, because of measurement  errors and inaccurate information about  the properties of the 

mixture and phase permeabilities. Therefore ,  the value of ~ should be determined from the condit ion of the least 

difference between the right- and left-hand sides of Eq. (11), for example, by the least-squares method.  

As an example illustrating the application of this technique, we present the results of processing the data 

on stat ionary investigations of well No. 10-P in the Karachaganakskii  per toleum-gas-condensate  field (the Republic 

of Kazakhstan) within the range of 3932-3971 m. The  corresponding experimental  data  are presented  in Fig. 1. 

The  theoretical curve ensures the least quadratic deviation at the mean permeability value k = 7 .3 .10 -15 m 2. The  

approximation, used in practice, by the dependence on the output in the form of a quadratic trinomial [6 ] gives in 
this case the value k -- 9.2- 10 -15 m 2. 

2. Prediction of the Well Output. Suppose we know the values of the total discovered thickness 7i and mean 

permeability ~ for a well. It is required to find the curve F'(Ap), Eq. (10), for a certain o ther  well with known 

thickness h',  mean permeabili ty ~', drainage radius r 0 , and local native pressure P0- For the composition of the 

mobile phase of the bed mixture to be the same we will assume, in accordance with Eq. (3), that the following 
inequalities are satisfied: 

Pd ~ PO ~ PO" (12) 

From formula (11) we find 
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F '  (Ap) = r F  (Ap) ,  r = k '  h '  In (roIrw)l('~ h In ( r 0 / r , ) )  . 

3. Reconstructing the Solution of the Filtration Problem. It is required to find the spatial distribution of 
pressure in the gas phase in filtration through a permeable layer that has drainage radius r~ and local native 
pressure Po- As before, we will assume that inequalities (12) are satisfied. We will use Ap = G ( Q )  to denote the 
dependence inverse to Eq. (10). Then we fix a certain value of the bottom pressure of the well Pw- Let (20 and Q0 
be the outputs that correspond, according to Eq. (10), to pressures Pw and P0 at the well bottom. Using formula 
(9), we find that 

= p0 - C ( q ) ,  (13) 

s t 

q = (0  o - 0~) In (rolr) l ln (rolrw) + Oal. 

Expression (13) gives a partial solution of the filtration problem. It should be noted that  the result  is 

independent  of the filtration characteristics of the layer  in the vicinity of the initial well. 

4. Determination of  the Absolute and Phase Permeabilities. Let the capillary pressure jump be equal to 

zero. In this ease the pressures in the gas and liquid phases coincide. We use the notation ~ ,  - T~Cg for the mean 

phase gas permeabil i ty and ~Onq = ~fliq for the mean phase condensate  permeabili ty.  System (5) can be converted 

to the form: 

dp 1 ,  0 " . - . F q '  + = 
(14) 

--1 --1 (15) Wfgng #xg - ( 1  -- B 0 fliqnliq/Xli q = 0 .  

Now we will consider formula (11). We will assume that the quantities Pw and ~w are variable and denote  

= ~(Pw) = dF/dAp. Differentiating both parts of formula (11), we obtain 

dpw ZTrk h 
d~ w - In (ro/rw)" 

From this express ion and from Eqs. (14)-(15) ,  making the identifications Pw-" P and  ~w ~ ~, we obtain two 

relations 

- 1  - 1  
~pgng/,lg + ~OliqnliqlXliq = ~ .  = �9 In (rO/rw) (2sr'h)-1, 

- I  - 1  
W ~ g r t g ~ g  - (1 - W)~Oliqnliq~tli q = 0 ,  

from which we can find expressions for the total phase permeabilities as functions of the pressure p _< Po at the 

corresponding point of the filtration flow: 

__ - __ - l t i l  . ( 1 6 )  tpg (1 -- ~ / X g n g  1 @ , ,  ~liq W/Aliqnliq * 

Since the value of saturat ion s at a given pressure remains unknown, then, generally speaking, relations 

(16) are insufficient to find the phase permeabilities ~,g and ~liq a s  saturat ion functions for determining the absolute 

permeabili ty 77. Nevertheless,  Eq. (16) makes it possible to obtain certain restrictions on the values sought. 

Thus,  we will introduce the variable Alp = ~liq - tpg, which should be a strictly monotonic function of 

saturation s. Eliminating the pressure from expressions (16), we can find the nondecreasing function 

~Oliq ---- ~liq ( A ~ ) .  (17) 
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The expressions used in calculations for phase permeabilities (for lithotypes of a given deposit) must be 
consistent with experimental curve (17). 

Then, if there is a rigorous inequality Pa < P0, or if a mobility threshold for the condensate is absent, i.e., 
s. = 0, then the mean absolute permeability can be determined from functions (16) as the maximum value of the 
total phase permeability for the gas: 

----- ~Og max, 

Otherwise, there is a lower bound: 

~gmax = m a x  {~ ( p ) l p  < P0}" 

> ~Og max �9 

Thus, knowledge of the theoretically obtained exact solutions for the problem of the filtration of a gas- 
condensate mixture and the experimental indicator curves makes it possible to calculate a number of important 
hydromechanical values. Moreover, in order to obtain useful information, it is often sufficient to use a functional 
form of the dependence of the solution on the free parameters without resorting to an explicit form of solution. 

N O T A T I O N  

r, distance to the well axis; rw, radius of the well along the drill bit; ro, r o, drainage radii; k, kin, 
permeability values; ~, ~', mean permeability; h, hm, values of layer thicknesses; ti, 7?, total thickness of permeable 

layers; M, number of layers; pg, Pgo, pressure in gas; Piiq, Pllq0, pressure in condensate; Pw, well-bottom pressure; 
Po, PO, native pressure; Pc, capillary pressure jump; p, pressure in the absence of capillary forces; Ap, depression; 
Po, pressure of the onset of condensation;/Zg,/tliq, shear viscosity in the gas and condensate; rig, nliq, mole density 
of the gas and condensate; cig, qliq, compositions of the gas and condensate; Cio, composition of the bed mixture; 
N, number of components; .fg, fliq, relative phase permeabilities for the gas and condensate; s, so, saturation by 

liquid phase; s,, mobility threshold of the condensate; IV, dimensionless function pg and Pliq; ~Og, ~Oliq, ~Ogmax, 
quantities with the dimensions of permeability; Q, (20, Q-o, q, D, outputs; ~, A~, ~w, ~o, K, a, auxiliary parameters; 
F, F', ~ ,  ~ . ,  F., G, auxiliary functions. 
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